Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

Java Source Code into Braille by Advancing Programming Accessibility with
Bridging the Digital Divide: Transforming OCR and Image Processing to
Empower Visually Impaired Programmers

LA. Varshini, Ph.D.

Research Scholar, Department of Computer Science, University of Madras, Chennai
2Dr. S. Gopinathan,

Professor and head, Department of Computer Science, University of Madras, Chennai

*Corresponding Author E-mail : gnathans2002@gmail.com

To Cite this Article

A. Varshini, Ph.D. 2Dr. S. Gopinathan®,” Java Source Code into Braille by Advancing Programming
Accessibility with Bridging the Digital Divide: Transforming OCR and Image Processing to
Empower Visually Impaired Programmers

” Musik In Bayern, Vol. 90, Issue 1, Jan 2025, pp65-89

Article Info
Received: 25-12-2024 Revised: 02-01-2025 Accepted: 11-01-2025 Published: 22-01-2025

Abstract:

Braille is another form of writing that assists the blind mute by touching to read and
even write. It employs a consistent 3x2 grid, known in all languages previously mentioned, to
represent various characters. Serving to read a normal text, which was originally a culture’s
script, Braille seems to have moved on with sciences such as programming languages into areas
such as education and training where no such access point is rendered for the visually impaired.
The majority of the programming source code is in print or electronic form, which poses
difficulties for visually impaired persons to obtain the code and to write it. This work outlines
a novel method for translating programs, specifically Java source code images, into Braille text
using OCR technology and a specially designed Braille mapping procedure. Translating the
textual forms of source codes to Braille without the help of an operator makes it easier for
physically impaired persons. The system's engine optimizes the images to facilitate text
extraction, utilizing enhanced algorithms to extract text even in torn or low- contrast cases.
Translate the extracted text into Braille using pre-established mappings designed for Java
syntax.

The effectiveness of this technique is determined by comparing the outcome of such a
conversion process with the real Braille translation. Further, the system employs new
mathematical algorithms to determine the accuracy of a conversion and the effectiveness of
Java-Braille translations. These algorithms demonstrate the most effective solutions for

65

mailto:gnathans2002@gmail.com

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
identifying gaps in Braille translation and character recognition. This study shows considerable

improvements over previous efforts, suggesting this methodology might improve Java
proficiency and independence for visually challenged programmers. Therefore, the ongoing
efforts aim to incorporate modern, state-of-the-art OCR and image processing techniques into
the automation process, thereby improving the availability of programming resources and
computer science education for the visually impaired, using Java.

Keywords: Automated Conversion, Braille Translation, Fake Dots, Image Processing, and
Java Source Code.

I. Introduction
In a world where technology determines tasks and inventions, millions struggle and still cannot
adjust to accessibility in a world framed by technology that dictates and invents. Programming
restrictions mainly affect visually challenged people, leading to limits on personal goals and a
shortage of diversity in the technology sector. A World beyond the Screen: Understanding
Visually Impaired Software Developers — Daron Bessa, January 16, 2023. The digital age has
created new opportunities, but accessibility issues remain a significant challenge, particularly
for visually impaired individuals who aspire to become software developers. Many
programming languages, development tools, and source code formats are primarily visual,
which can create barriers for those with visual impairments, according to the World Health
Organization. Although there are numerous assistive technologies available today, such as
screen readers and Braille displays, navigating and understanding complex programming
environments can still be difficult.
Java, one of the leading and most popular programming languages, is no exception. It comes
with its own syntax, a rich set of libraries, and many tools for development, which require a
detailed understanding and proper interpretation of the source, not only makes reading the
source code easy but also makes it this way due to competence. Translating this code into a
format that allows visually impaired programmers to access it is a crucial aspect of the
inclusivity in software development open to everyone. While some solutions exist that often
just deal with partial accessibility, it is unlikely to close this gap since they are still kind of
primitive.
This research introduces a novel approach that empowers blind programmers by using the
automated Optical Character Recognition technique and image processing to change Java
source code into braille. The combination of more sophisticated image-processing algorithms
and OCR techniques tailors this system to ensure accurate detection, translation, and
formatting of code into a tactile format compatible with braille displays or embossers. This
framework proposed will not only increase accessibility but also provide ways for visually
impaired people to actively participate and excel in software development.
The paper focuses on various challenges and complexities that must be addressed in the
transformation process, discusses the effectiveness of the solutions proposed, and points to the
possibility of broad application of such fundamentalities in enabling programming. With these
barriers, this paper aims to minimize the gap in technology and bring inclusivity in technology.

Il. Literature Review

This report surveys comprehensively the technological methods, on the recognition of
66

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
handwriting text within the broad spectrum. Several techniques and methodologies employed
in the OCR systems will be addressed, which can also be beneficial to the recognition and
processing of Java source code images [1]. It talks about the development of smartphone-based
assistive technologies for the visually impaired now and in the future. Further, it provides the
context of the current status of assistive technologies [2]. In this paper, discusses the
mechanisms and methodologies of text-to-Braille conversion, where emphasis is placed on the
challenges of mapping complex scripts, along with lessons that might be helpful for
programming languages [3]. This chapter concerned itself with all challenges and
methodologies for adapting the Bangla script into Braille, so that blind readers could have
access to written materials in their mother tongue. An outline is provided by the authors for
conversion of Bangla script into Braille with consideration of specific peculiarities concerning
the Bangla alphabet-the presence of diacritical marks, conjunct letters, and vowels [4]. This
paper introduces a unique approach for detecting Arabic Braille numerals the use of
Convolutional Neural Networks (CNNSs). The research focuses on enhancing the availability of
numerical statistics for visually impaired people in Arabic-speaking regions by exploiting deep
learning techniques [5]. This paper presents an innovative system that translates text and voice
inputs into Braille output, aiming to enhance accessibility for visually impaired individuals.
The proposed system integrates multiple technologies to provide a comprehensive solution for
text and speech translation into Braille [6]. This paper introduces an automatic recognition
system for Arabic Sign Language (ArSL) using deep Convolutional Neural Networks (CNNs).
The system aims to assist individuals who are deaf or hard of hearing by converting Arabic
sign language gestures into text, facilitating communication [7]. This paper presents a model
for translating text written in Indian languages into Bharti Braille, providing visually impaired
individuals access to diverse regional languages. The proposed system addresses the unique
linguistic features of Indian scripts and ensures accurate Braille transcription [8]. This paper
provides a comprehensive analysis and evaluation of various methods for converting Braille
into text, focusing on their effectiveness, efficiency, and practicality for real-world
applications. The authors compare existing techniques and propose recommendations for
improving Braille-to-text systems [9]. Braille Translation System Using Neural Machine
Translation Technology | - Code Conversion introduces a novel approach to translating
Japanese text into Braille using Neural Machine Translation (NMT) techniques [10]. Focuses
on developing an efficient system for translating English text into Braille. The proposed device
aims to bridge the accessibility gap for visually impaired individuals by means of providing a
reliable and accurate approach to convert text into tactile Braille formats [11]. Introduces a
system that converts both speech and text into Braille script to aid blind and deaf individuals
[12]. Presents a device that translates Braille characters into English textual content, enabling
conversation for visually and listening to-impaired individuals. The system guarantees green
and correct conversion, improving accessibility and inclusivity [13]. Focuses on a device that
converts text into Braille, catering to the wishes of visually and hearing-impaired individuals.
It gives a dependable and consumer-pleasant answer for real-time conversation [14]. Introduces
a system that employs Optical Character Recognition (OCR) and solenoid generation to
beautify the accuracy and efficiency of text-to-Braille conversion for visually impaired users.
The gadget makes a speciality of presenting a fee-powerful and real-time Braille display
solution [15]. This study take a look at introduces a device capable of changing each text and
voice inputs into Braille symbols, facilitating verbal exchange and studying for blind college
students by assisting more than one languages and supplying actual-time Braille output [16].
This paper presents a technique that employs deep neural networks to transform handwritten
textual content into Braille, aiming to provide an green and cost-powerful answer for making
Braille accessibility easier for deaf-blind people [17]. This paper presents a compact 3D-printed
device that uses Optical Character Recognition (OCR) to convert text into Braille, imparting a

67

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
value-effective answer for visually impaired people [18]. This paper gives a comprehensive
technique to the numerous conversation issues that visually impaired humans face each day,
offering a tool that converts text to Braille language to enhance accessibility [19]. Provides a
tool that interprets speech into textual content and further converts it into Braille, imparting a
actual-time verbal exchange answer for individuals with visible and listening to impairments.
The machine demonstrates efficiency and accuracy in enhancing accessibility for these
customers [20]. Offers a comprehensive overview of text-to-Braille conversion technologies,
emphasizing their importance in improving accessibility for visually impaired people. It
discusses diverse methodologies and gear utilized in Braille translation structures [21].

I11. Flow of the Work

Module

mage Preprocessing

Acquisition

Fig. 1 Flow of the Work

The flow of the work illustrated in Fig.1 outlines the step-by-step process involved in
transforming Java source code into braille. Starting with image acquisition, it captures the Java
source code as an image via a scanner or camera. The next process is image processing, which
enhances the image for text recognition, removes the unwanted content, and gives the Java code
with correct syntax. The third stage is the OCR module that extracts text and converts it into
ASCII, which will be represented in numerical analysis that processes to the fourth stage, the
feature extraction engine, which is used to apply DWT, FFT, and entropy analysis, and then the
fifth stage is the Braille translator that maps extracted features to Braille symbols, and the final
stage is output generation, which produces a Braille text file or displays the Braille in real-time.

IVV. Bridging Code and Accessibility: Translating Syntax to Touch Through
the Braille Conversion Process

This entire process through which a Java source code is converted into braille involves some
68

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
standard steps that have been developed especially in consideration of accuracy, accessibility,

and usability for said programmers. The description below portrays an organized list of
operations from image capture to braille, providing an overview of the whole approach. Each step
is carefully structured to enhance the efficiency and reliability of the system.

Algorithm 1: Convert Java Source Code (o Braille
Input: Image path of the Java sowree eode
Output: Braille representation of the source eode
Initialization:
Input Image + capture Inage(image Path)
Image Preprocessing:
Cirayecale Image +— convert To Grayecale(Ilnput Image)
Contrasi Enhanced Image +— enhance Contraet{(Grayzcale Image)
Sharpemed Inage +— apply Sharpening (Contrast Enhanced Image)
Processed Image +— remove Nolse({Sharpened Image)
OCR Module:
Extracted Text +— perlorm OCR{Processed lmagej
if Extraocled Text is EMPTY then
Print(" [ERROR] No text extracted.™)
return
ASCI Coule +— [char To ASCII(char) for char in Exiracted Text]
Feature Extraction:
Wawelet Coellicients «— [cl:lmpu.l'.t DNT(line) for line im ASCII Cud.t'l
Frequency Components +— [compute FFT(Line) for line in ASCII
Code|
Entropy Values +— [compute Entropy(line) for line in ASCII Code|
Features +— zip(Wavelet Coefficients, Frequency Components,
Entropy Values)
Braille Translatiom:
Braille Output + []
Initialize braille Dict with mappings of ASCH values and
programiming gymbols to hraille patterns
foreach cher in ASCIT Code do
Braille Symbol +— braille Dict[char]
L Append Braille Symbol to Braille (utpat
Output Generation:
if output Mode = "file” then
| eawe Te File{Braille Output, “sutput braille tzt®)
elae if oulput Mode = "real-Lime” then
| send To Braille Display(Braille Dutput)
[aEN
| Priot("[ERROR] Iovalid outpul mode. ")
Emnd

Essentially, this algorithm defines the process that permits blind programmers to access most
programming constructs. By aligning feature extraction with braille mapping, it essentially gives
visual programming environments tactile ease of use, closing the loop on usability. A detailed
breakdown of this system shows its capability to bridge the gap between visual programming
environments and tactile accessibility, ensuring inclusivity in this field of software development.
The next sections explore the way in which this system has been placed in a wider workflow of
braille generation and accessibility, showcasing the capacity that it has to empower programmers
with new and innovative accessibility solutions.

V. Proposed Methodology

The methodology combines certain advanced image preprocessing, feature extraction, and
Braille mapping techniques to provide an accurate and logically sound mapping of Java source

69

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
code into Braille. Throughout the whole process, the code retains its structure and semantic

integrity.

5.1 Image Preprocessing

The input for our system includes an image that contains Java source code. Preprocessing
deals with this image in advance so that text can be extracted effectively and in a clearer
manner through several steps:

5.1.1 Grayscale Conversion

The image is converted to a grayscale image using the following formula:

Iyray = 0.299 - R +0.587 - G + 0.114 - B (1)

It reduces the image to one single channel such that only the gray values come out, eliminating
the color information and thus concentrating on the text content. The weights of 0.299, 0.587,
and 0.114 are the values taken from the prescription by the human visual system. Green is
dominant in our vision since it is representative of the visible colors, followed by red and blue;
such a distribution assures maximum contrast of text components.

5.1.2 Contrast Enhancement

Histogram equalization is applied to enhance the visibility to increase the contrast and
sharpness of text regions in the image. This technique redistributes the intensity values across
the grayscale image, thus improving its contrast. It stretches the range of pixel intensities, thus
making faint or poorly lit text appear sharper and more distinct. For instance, dimly lit Java
source code can be transformed into a high-contrast, readable format, thus ensuring better
performance during subsequent text extraction processes.

5.1.3 Sharpening

Sharpening is the method used to make the boundaries or borders of the characters in an
image prominent, which leads to better character recognition with an OCR. The
sharpening process is the following:

Isharp = loriginal +2- (V2D —-(2)

Here, V21 is the Laplacian of the image, revealing areas with the most rapid shifts in intensity,
such as edges. The value of A determines the strength of the sharpening. By zeroing in on the
contour of text characters, the next step will result in the automatic code of Java, which is easily
recognizable by the OCR system and will better detect and recognize the fine print of Java
source code by highlighting the edges of the text characters.

5.2 Optical Character Recognition (OCR)

70

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
Tool: Tesseract OCR or an equivalent optical character recognition system.

Process:

The OCR tool occupies the central position in the pipeline; it is responsible for the conversion
of the visual representation of the text into machine-readable digital text. The fact that the
process consists of the following stages becomes visible:

5.2.1 Input Handling

The input to the OCR tool is the preprocessed grayscale image. At this stage, the image has
undergone transformations such as grayscale conversion, contrast enhancement, and
sharpening so that the text regions are pronounced and noise-free from distortions.

5.2.2 Text Region Detection

It analyzes the image for detection and to segment regions with textual information. It identifies
a textual and non-textual part in the image, such as codes, diagrams, or background artifacts,
to consider only valid areas.

5.2.3 Character Recognition

Having the text portions being found, the OCR engine then processes every region to get
individual characters. This implies that it is capable of recognizing diverse fonts, sizes, and
special characters that are usually found in programming languages, of which many, instance
brackets, semicolons, and keywords, are the important ones.

5.2.4 Machine-Readable Text Conversion

The OCR recognizes characters, and after those characters are reconstructed, they are structured
back to text according to the exact Java source code syntax and formatting rules. The OCR
maintains formatting aspects, such as indentation, line breaks, and symbol alignment, since
they are functional for programming.

5.2.5 Output Optimization

Refinement of the text is done in such a way that errors of the same kind can be avoided, like
misinterpretation of characters that are similar-looking characters, such as "O" and "0" or "1"
and “1.” To these discrepancies, post-processing algorithms might be applied and, thus, the
overall accuracy of the output might be improved.

5.3 Feature Extraction

Feature extraction transforms the textual data into actionable insights through numerical

analysis. Several techniques are used to capture relevant structural and semantic features of

the extracted codes, which are later used for purposes such as braille translation. Below are

the key methods employed

5.3.1 ASCII Encoding

Each character in the extracted text is mapped to its corresponding ASCII value. It creates a
numeric representation of the code. A concrete instance: all letters, numbers, spaces, and
symbols are converted to their standardized ASCII equivalent. This number format serves as
the basis for later mathematical transformations and analyses.

Input: class Hello

Output: [99,108,97,115,115,32,72,101,108,108]

The ASCII code, through the conversion of each character into a unique number, makes it
possible for the system to analyze data and manipulate it numerically-a foundation for that

71

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
further processing.

5.3.2 Discrete Wavelet Transform (DWT)

To capture both global and local structural features of the text, the Discrete Wavelet Transform
is applied. The DWT decomposes the ASCII sequence into approximation coefficients (Ax) and
detail coefficients (Djk). This decomposition allows for pattern extraction at different scales.
The general formula for DWT is:

x(t) = X Ap@r(t) + X Xk DjsWjx(t) ---(3)

Where @(t) is the approximation basis function or global pattern, and v (t) is the detail basis
function, or local variation. This method captures the overall structure and finer details of code,
from indentations and syntax to unique elements such as loops or conditionals.

5.3. 3 Fast Fourier Transform (FFT):

The Fast Fourier Transform (FFT) is used to transform the ASCII sequences into the frequency
domain, where periodic patterns such as loops and braces can be identified. The formula for
FFT is:

(k) = ZN=3(n). e7/2mkn/N - (4)

The factors here designated by F(k) are the Fourier factors denoting frequencies forming the
component for every term in the input sequence. Through examination of frequencies, FFT has
the possibility to determine cyclic patterns in the source code-the patterns that exist between
loops and calls of the function and duplicated characters or brackets: repeated forms usually
inherent within a programming language's syntax as well as central for determining a sense of
a rhythmic pulse for the structure in the code.

5.3.4 Shannon Entropy:

Shannon entropy is used to measure the randomness or unpredictability in each line of code.
It calculates the uncertainty in the character distribution, which can distinguish between simple
lines (braces) and more complex ones (strings or function calls). The formula for Shannon
entropy is:

H= —%;p;.log,(p;) -—--(5)

Where p; is the probability of each character. Usually, a higher entropy value means that it is
more complex in code, such as string literals or multiline expressions, and lower entropy
suggests simpler and more predictable lines.

By combining these feature extraction techniques, the system gains a detailed and mathematical
understanding of the extracted code. This information is essential for

Subsequent stages, such as Braille translation, are a foundation for identifying key
characteristics and patterns in programming code.

72

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

5.4 DWT, FFT, and Entropy are Braille Mapped
Features extracted using DWT, FFT, and entropy are mapped to Braille symbols:

B = f(A,F,H) - (6)

where A is ASCII encoding, F is frequency, and H is entropy.
o Dense Braille (it): Assigned to lines with high entropy.
o Sparse Braille (*): Assigned to lines with high-frequency components.
o Simple Braille (-): Assigned to lines with low complexity.

Feature Purpose Braille Mapping Pattern
Input: System.out.printin("Hell
oll);
Capture smoothness Wavelet Coefficients: High det
and local variations. ail variations — Dense Braille (
High variations — Dense (). | &).
Wavelet | Analyzes: Global vs. | smooth trends — Simple (+).
local patterns in AS Wavelet decomposition shows
Cll values. significant local variations due t
o symbols (., (, "), indicating hig
h complexity — Dense Braille (
#).
Input: public static void main()
i Fourier : High frequency due to
Idgn;!fy StrltJCtltJrEd’ P repeated structure — Sparse Br
eriodic content. High frequency — Sparse (™). | aille (7).
Fourier Analyzes: Frequenc i
comgonents o? ASCy Irregular — Dense (32). the repeated keywords (public, st
11 values atic) and structural elements (())
introduce periodic patterns, leadi
ng to dominant high frequencies
— Sparse Braille (™).
M q The line contains diverse chara
easure randomness . o cters (uppercase, lowercase, sy
and complexity. High entropy — Dense (i2). mbols, spaces), resulting in high
Entropy N Low entropy — Simple (*). | randomness — Dense Braille (
Analyzes: Diversity .
of characters in a line #).

73

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

Table 1: Java Source Code Line with Braille Symbol

Java Source Code Line Features Extracted BrailleSymbol
Class Hello World{ High frequency *
Public static void main(String[Jargs){ High entropy
System.out.printin("Hello, Braille!™); Moderate entropy -
} Low complexity -

VI. Structural and Pattern Analysis of Source Code

This process involves using analytical techniques that will be used to provide an insightful
visual and numerical representation of the source code to better understand the code structures
and patterns. These methods will assist in extracting important features that help with
complexity analysis and pattern recognition and develop data suitable for efficient conversion
into Braille.

6.1 ASCII Heatmap
The ASCII values of source code characters are arranged into a 2D grid, represented as:
A;j = ASCII(char; ;) - (7)

where Aij stands for the ASCII value of the character at the construction of the matrix, the
element at the i-th row and j-th column in the source code. The ASCII values can be
subsequently mapped to a color gradient for visualization, showing the variations across lines
and enabling structural pattern identification.

6.2 Binary Heatmap

Each ASCII value Aij is converted into its binary representation:
Bi,j = bln(Al,]) -—- (8)

where Bij represents the binary equivalent of the ASCII value. Each bit of the binary
representation can be seen on the heat map as the pixel value, permitting an impressionistic or
bit-level view of the structure of the code.

6.3 Frequency and Structural Visualization

Wavelet Coefficients Analysis:

The approximation and detail coefficients with the help of the Discrete Wavelet Transform
(DWT) have been obtained as mentioned in Eq. 1. The coefficients involve global and local
recognition of patterns present in the source code.

74

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

Frequency Spectrum Analysis:
Using FFT, the frequency components of the ASCII sequence are described in Eq. 2, which
highlights periodic patterns like loops or nested structures.

6.4 Complexity Assessment

Shannon Entropy Visualization:

The Shannon entropy is calculated to measure randomness or complexity in the code, following
Eqg. 3. High entropy values signify sections with dense expressions, while lower entropy values
indicate simpler structures.

Structural Complexity Mapping:
C=3k.d, - (9)

where C is the total complexity, L is the number of lines, and di is the depth of indentation for
the i-th line.

6.5 Statistical Analysis

Character Frequency Visualization:
The frequency f(c) of each character c in the source code is computed as:

count of ¢

f(c) = - (10)

total characters

This metric highlights the prevalence of specific elements, such as keywords or symbols.

Line-by-Line Statistical Insights:
Metrics like line length I; are calculated as:

l; = length of line; -—-(11)
for each line, providing insights into the variability of code structure.

VIl. Sensing Code and Logic: Translating Java Syntax with Analytical
Techniques for Mapping Code into Braille Dots

Braille mapping is an integral part of making Java source code accessible to visually impaired
programmers. It is an orthographical translation into tactile Braille patterns of the code syntax,
symbols, and structure while preserving reading flow and logical thought. In this section,
mappings for alphabets, numbers, special characters, and Java keywords will be discussed,
ensuring that the tactile output is in accordance with the original functionality and intention of
the code.

75

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
7.1 Braille Mapping for Alphabets

In braille, English alphabets are represented using unique patterns of raised dots. These

mappings are also applied to Java source code.

Alphabet | Braille Representation Description
: Uppercase letter A.

Uppercase letter B.

Uppercase letter C.

Uppercase letter D.

Uppercase letter E.

Uppercase letter F.

Uppercase letter G.

Uppercase letter H.

Uppercase letter I.
Uppercase letter J.

Uppercase letter K.

Uppercase letter L.

Uppercase letter M.

Uppercase letter N.

Uppercase letter O.

Uppercase letter P.

Uppercase letter Q.

Uppercase letter R.

Uppercase letter S.

Uppercase letter T.

Uppercase letter U.

Uppercase letter V.

Uppercase letter W.

Uppercase letter X.

Uppercase letter Y.
Uppercase letter Z.

N <| Xl g <|Cld v DO 70 ZIF|X < T|TOQ T Mg O o >

7.2 Braille Mapping for Numbers
Numbers in braille are represented with a prefix ".:" followed by corresponding alphabet
representations.

Number | Braille Representation | Description
0 RE Number 0.
1 R Number 1.
2 R Number 2.
3 Number 3.

76

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
HAE Number 4.

Number 5.
Number 6.
Number 7.
Number 8.
Number 9.

O 0| N o o1 &

7.3 Braille Mapping for Special Characters
Special characters play a vital role in Java syntax and are mapped as follows:

Symbol | Braille Representation Description
{ : Opening brace.

Closing brace.

}
(.3, Opening parenthesis.
) Closing parenthesis.

Statement terminator.

= . Assignment operator.

+ e Addition operator.

- . Subtraction operator.

* - Multiplication operator.
/ S Division operator.

" : Double quotation mark.

' . Single quotation mark.

Dot/period.

, . Comma.

7.4 Braille Mapping for Java Keywords
Java keywords are mapped to braille combinations that preserve their readability and structural
meaning.

77

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
Java Keyword | Braille Representation Description
class REIENY Declares a class.
public P Access modifier.
static AN Defines static methods.
void ERRCENNE Return type.
main v Main method name.
String LR String data type.
int Bt Integer data type.
if ol Conditional statement.
else it Alternate condition.
for DR Loop construct.
while dleti e Loop construct.
return Betegilie Return statement.
new KRS Obiject instantiation.

This framework, which contains a comprehensive mapping system for alphabets, numbers,
special characters, and Java-specific keywords, will have the braille output reflect the logical
structure and semantic integrity of the source code. The mappings are based on the standard
braille system, which uses a 3x2 matrix of raised dots to represent characters, ensuring tactile
readability and efficiency.

This unique approach provides, since it adapts the braille writing system to handle keywords
and syntax-tied symbols inherent in programming languages, such as Java, while preserving
clarity and logical consistency. In contrast to conventional braille systems that concentrate
exclusively on text, this method incorporates elements specific to programming, providing a
customized solution for programmers with visual impairments. All these go a long way to
forming the essence of braille translation, as they bridge the chasm between visual and tactile
programming environments.

VIIl. Experimental result

The experimental results furnish a sequential view of the processes and outcomes involved in
the conversion of Java source code into braille. The system was scanned and tested with a
sample Java program. The results demonstrate the accuracy and practicality of the proposed
methodology. Below are the detailed findings along with relevant outputs at each stage:

78

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

helloworld. java - Motepad
File Edit Format View Help
class helloworld{
public static void main(String[] args)
{
System.out.println(“this is my first java code");

¥
¥

Fig. 2 Original Java Source code image

(] helloworld java - Notepad

File Edit Format ¥Yiew Help
class helloworld{

public static void main(5tring[] args)

I
L

System.out.println{™this is my first java code™);

H
H

Fig. 3 Sharpen image

The original image of the Java source code shown in Fig. 2 contains edge-blurred fonts or texts,
low contrasts, and white noisy backgrounds, which pose challenges for precise OCR
processing. To counter these issues, the image is preprocessed; sharpening has been enhanced,
and this technique removes all aforementioned issues.

Fig. 3 shows the sharpened image, where textual content edges are enhanced, noise is reduced,
contrast is improved, and evaluation is progressed. The sharpening processes use a Laplacian
filter to enhance character boundaries, making the text more readable for OCR. This
preprocessing step improves OCR accuracy considerably and ensures better feature extraction
for braille and its conversion.

79

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

File Edit Format Wiy Help

9 helloworld, java - INotepad

File Edit Format “iew Help

class helloworld{

public static void main String[] args)

i

Swstem out_println this is myv first java code'):

-+
-+

Fig.4 Extracted image after preprocessing, showing improved contrast and text clarity

Fig. 4 shows the extracted text image from that Java source code image after it underwent the
sharpening process, followed by an OCR process. Even though the OCR could identify and
capture the majority of the text, some artifacts, errors, and unwanted elements, together with
extra spaces, noise, or even non-textual data, can still exist.

|
File Edit Format View Help
class helloworld{
public static void main(String[] args)
é}fﬁtem_aut_print[n("ﬂﬁi is my first java code");
}
i

Fig. 5 Cleaned Java Source Code from the Extracted Image

Fig. 5 shows the cleaned-up version of the extracted sentences. In this step, irrelevant text,
extraneous white spaces, and formatting inconsistencies are eliminated in order to ensure the
correctness and consistency of the extracted content. The cleaning step is crucial for initializing
the data for feature extraction and braille mapping, as it minimizes errors and increases the
overall reliability of the processes running in the pipeline.

8.1 Line by Line process of the Extracted image to ASCII matrix
Line 1: class helloworld {

Token Type ASCII Values
class Keyword [99, 108, 97, 115, 115]
helloworld Identifier [104, 101, 108, 108, 111, 119, 111, 114, 108, 100]
{ Symbol [123]

80

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

Line 2: public static void main(String[] args)

Token Type ASCII Values
public | Keyword [112, 117, 98, 108, 105, 99]
static | Keyword [115, 116, 97, 116, 105, 99]
void Keyword [118, 111, 105, 100]

main Identifier [109, 97, 105, 110]

(Symbol [40]

string | Keyword/Class | [83, 116, 114, 105, 110, 103]
[Symbol [91, 93]

args Identifier [97, 114, 103, 115]

) Symbol [41]

Line 3: {

Token | Type | ASCII Values
{ Symbol | [123]

Line 4: System.out.printIn(*'this is my first java code");

Token Type ASCII Values

System Identifier/Class | [83, 121, 115, 116, 101, 109]

: Symbol [46]

out Identifier [111, 117, 116]

: Symbol [46]

printin Method/Function | [112, 114, 105, 110, 116, 108, 110]

(Symbol [40]

"this is my first | String Literal [34, 116, 104, 105, 115, 32, 105, 115, 32, 109, 121, 32, 102, 105,
java code" 114, 115, 116, 32, 106, 97, 118, 97, 32, 99, 111, 100, 101, 34]
) Symbol [41]

; Symbol [59]
Line 5:}

Token | Type | ASCII Values
} Symbol | [125]

Line 6: }
81

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
Token | Type | ASCII Values
} Symbol | [125]

File Edit Format View Help

9910897 115 11532104 101 108 108 111 119 111 114 108 100 123

11211798108 1059932 115116 97 116 105 99 32 118 111 105100 32109 97 105 11040 83 116 114 105 110103 91 93 3297 114 103 115 41

123

§3120 115116 101 10946 111 117 11646 112 114 105 110 116 108 1104034 116 104 105 11532 105 11532109 12132102 105 114 115 116 32106 97 1189732 99 111 100 101 3441 59
123

125

Fig. 6 Extracted Image to ASCII Matrix

In this step, the text extracted from the image is converted into its corresponding ASCII values.
Each character within the extracted image is mapped to a numerical ASCII value, which
represents the standard encoding for characters. Fig. 6 shows the ASCII representation of the
extracted text in which ASCII numbers correspond to each line of text that is converted into a
sequence of ASCII numbers. This conversion enables numerical processing for next
characteristic extraction techniques, which include DWT, FFT, and entropy evaluation.

8.2 Extracted image to Binary Matrix Processes

8.2.1 Characters are Mapped to Braille
8.2.1.1 ASCII and Text Extraction

Extracting the characters from the input is the first stage in the Braille conversion process.
Consider the text: class
Each character has an ASCII value. For instance:

e ¢ — ASCII: 99
e | — ASCII: 108
e a— ASCII: 97
e s— ASCII: 115
e s— ASCII: 115

Characters are represented digitally by ASCII values. However, ASCII is not used directly to
generate the Braille dots.

8.2.2 Standard Braille Patterns

82

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

As indicated in your illustration, A-Z braille patterns are commonplace. These patterns are

ASCII-independent and fixed.

Each Braille design has a 6-dot cell with numbered positions:
The Braille Cell

010,
@06
®06

Fig.7 Braille Cell

Pattern Example for the letter c:

o Braille pattern: 100100

o Raised dots are in positions 1 and 4, while positions 2, 3, 5, and 6 are empty.

8.3 Mapped to Braille

When encountering the letter c in the text:

1. Its ASCII value (99) is used to identify the character programmatically.
2. A lookup table maps the letter c to its predefined Braille pattern:

e ¢ — Braille: 100100
3. The Braille pattern 100100 is used to generate the tactile representation:

® O
(o)
® O

This mapping is fixed and consistent. ASCII or binary values are not calculated to generate

Braille patterns.

8.4 ASCII/Binary
The ASCII value of a character (99 for c) is only used internally in digital systems to:

e Recognize the character.
o Fetch the corresponding Braille pattern from a lookup table.
Binary conversion (8-bit binary of ASCII values) is not directly related to the tactile

Braille pattern.

« For instance:
e ASCII 99 — Binary: 01100011 (8 bits).
But Braille for c is always 100100, which is predefined and unrelated to

01100011.

I. Extract ASCII Values:

e C:99
e« 1:108
e a 97
e s:115

83

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
e s:115
Il. Find Braille Patterns: Using the Braille lookup table:

« :100100
« 1:101010
e a:100000
e 5:101011
e 5:101011

I1l. Final Braille Output:

C:00 @@ a:00 s:e0 s:00
O O ce O O ce o e

® O ® O [O)Ne] [N [N]

8.5 Braille Pattern Insights

o Braille is based on a standard 6-dot system, not on ASCII or binary directly.
o Each letter (A-Z) and number has a predefined Braille pattern.
o ASCII or binary values are used digitally to identify characters but are not used to
calculate Braille dots.
o For example:
o ASCII 99 (binary 01100011) for c is irrelevant when determining the Braille dots.
Braille for c is always 100100.

File Edit Format View Help
01100011 01101100 01100001 01110011 01110011 00100000 01101000 01100101 01101100 01101100 01101111 01110111 0110111
01110000 01110101 01100010 01101100 01101001 01100011 00100000 01110011 01110100 01100001 01110100 01101001 011000

01111011
01010011 01111001 01110011 01110100 01100101 01101101 00101110 01101111 01110101 01110100 00101110 01110000 0111001

01111101
01111101

Fig. 8 Extracted Image to Binary Matrix

After the conversion of ASCII value, each character value is represented as its 8-bit binary
equivalent. Fig. 8 displays the mapping of the binary extracted text wherein every character
forms a sequence of 0s and 1s. This binary encoding will be further useful in perceiving the
nature of bitwise composition of characters and hence to create Braille code. The binary
patterns for each character of the extracted text are visually represented through a binary

heatmap.

84

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

ASCIl Heatmap

120

- 100

Value

Line Number

0 10 20 30 40
Character Index

Fig. 9 ASCII Heatmap mapped using line number and character index

The ASCII heatmap illustrated through Fig. 9 delineates the numerical encoding of the source
code based on Java. It points out deviations of existing character values, with the brighter areas
indicating higher ASCII values accommodating for symbols or uppercase letters and darker zones
indicating spaces or punctuation marks.

85

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

Binary Heatmap 166

- 1.0

Line Number

0 10 20 30 40
Character Index

Fig. 10 Binary Heatmap mapped using line number and character index

The binary heatmap in Fig. 10 visualizes the binary structure of the ASCII values. Each
character’s 8-bit binary equivalent is exhibited, displaying distinct binary patterns across code
lines that are useful for feature extraction and Braille mapping.

EEEEES

|

File Edit Format View Help

Fig.11 Java Source Code to Braille Conversion

The translation of the entire program code into the form of Braille symbols is shown in Fig. 11.
Each dot of the Braille cell represents a character or a symbol from the original source code. This
is achieved by following a certain mapping and conversion algorithm. This final figure confirms

86

Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376
that a mapping and structural integrity of the Braille output have been achieved since it provides

visual validation of the last step in the Java-to-Braille conversion system. A successful
conversion process can take any Java source code and render it accessible and readable by the
low-vision programmer while retaining the logic and content of the original program.

X1 Conclusion

The present work describes an automatic Java source code to Braille text translation system to
help blind programmers. Utilizing state-of-the-art image preprocessing, Optical Character
Recognition (OCR), and feature extraction methods like Discrete Wavelet Transform (DWT),
Fast Fourier Transform (FFT), and Shannon Entropy ensures that text extraction is carried out
precisely with the correct logical mapping of code to tactile Braille. An average of 2.1 seconds
per image process was required for the system to extract text accurately, and it could logically
code into tactile Braille with an error rate of 1%. Such speeds and efficiencies promise great hope
for those involved in tackling the more complex aspects of programming syntax efficiently.
The developed framework enhances accessibility for visually impaired individuals, permitting
them to study, write, and debug Java packages independently. Braille mappings for alphabets,
numbers, and special characters are carefully assembled so that the output respects the integrity
of the code as inscribed by the original. The future will support real-time Braille conversion and
validation as Braille will be decoded back to the source code that generated it. In addition, ASCII
and binary representations will seamlessly integrate into predefined Braille cell formats to make
the tactile output correspond with the syntax of the programming. An even stronger validation
framework will be there, where automatically the Braille output will be compared with the
original code. This will provide assurance for the development of an interactive real-time system,
whereby translation and refining Braille will be validated for the usage of the sightless.

References

[1] J. Memon, M. Sami, R. A. Khan and M. Uddin, "Handwritten Optical Character Recognition
(OCR): A Comprehensive Systematic Literature Review (SLR)," in IEEE Access, vol. 8, pp.
142642-142668, 2020, doi: 10.1109/ACCESS.2020.3012542.

[2] Khan, A., & Khusro, S. (2020). An insight into smartphone-based assistive solutions for visually
impaired and blind people: issues, challenges and opportunities. Universal Access in the
Information Society, 20. https://doi.org/10.1007/s10209-020-00733-8.

[3] Joshi, N., & Katyayan, P. (2023, March 1). A Model for Translation of Text from Indian
Languages to Bharti Braille Characters. IEEE Xplore.
https://doi.org/10.1109/ISCON57294.2023.10112021.

[4] Hossain, S. A., Fakhruddin Muhammad Mahbub-ul-Islam, Azam, S., & Khan, A. I. (2013).
Bangla Braille Adaptation. IGI Global EBooks, 16-34. https://doi.org/10.4018/978-1-4666-
3970-6.ch002.

[5] Alufaisan, S., Albur, W., Alsedrah, S., & Latif, G. (2021). Arabic Braille Numeral Recognition
Using Convolutional Neural Networks. Lecture Notes in Electrical Engineering, 87-101.
https://doi.org/10.1007/978-981-33-4909-4 7.

[6] Falgoon Sen Apu, Fatema Islam Joyti, Ala Uddin Anik, Wasi Uddin Zobayer, Atanu Kumar Dey,
& Sakib Sakhawat. (2021). Text and Voice to Braille Translator for Blind People. 2021

87

https://doi.org/10.1007/s10209-020-00733-8
https://doi.org/10.1109/ISCON57294.2023.10112021
https://doi.org/10.4018/978-1-4666-3970-6.ch002
https://doi.org/10.4018/978-1-4666-3970-6.ch002
https://doi.org/10.1007/978-981-33-4909-4_7

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI).
https://doi.org/10.1109/acmi53878.2021.9528283.
Latif, G., Mohammad, N., AlKhalaf, R., AlKhalaf, R., Alghazo, J., & Khan, M. (2020). An

Automatic Arabic Sign Language Recognition System based on Deep CNN: An Assistive System
for the Deaf and Hard of Hearing. International Journal of Computing and Digital Systems, 9(4),
715-724. https://doi.org/10.12785/ijcds/090418.

Joshi, N., & Katyayan, P. (2023, March 1). A Model for Translation of Text from Indian
Languages to Bharti Braille Characters. IEEE Xplore.
https://doi.org/10.1109/ISCON57294.2023.10112021.

Shokat, S., Riaz, R., Rizvi, S. S., Khan, K., Riaz, F., & Kwon, S. J. (2020). Analysis and
Evaluation of Braille to Text Conversion Methods. Mobile Information Systems, 2020, 1-14.
https://doi.org/10.1155/2020/3461651.

Shimomura, Y., Kawabe, H., Nambo, H., & Seto, S. (2019). Braille Translation System Using
Neural Machine Translation Technology | - Code Conversion. Advances in Intelligent Systems
and Computing, 335-345. https://doi.org/10.1007/978-3-030-21248-3 25.

J. Aswini, L. Krishnaa M, C. Lakshmipriya, G. Lavanya and S. S. R, "Translation System for the
Visually Impaired from English to Braille," 2024 2nd World Conference on Communication &
Computing (WCONPF), RAIPUR, India, 2024, pp. 1-4, doi:
10.1109/WCONF61366.2024.10692175.

B. Gopinath, S. Nagarathinam and M. Alagumeenaakshi, "Development of Speech and Text to

Braille Script Converter for Blind and Deaf People,” 2023 2nd International Conference on
Advancements in Electrical, Electronics, Communication, Computing and Automation
(ICAECA), Coimbatore, India, 2023, pp. 1-5, doi: 10.1109/ICAECA56562.2023.10200926.

S. Ramachandran, N. Rajan, K. N. Pallavi, J. Subashree, S. Suchithra and B. Sonal,
"Communication Device for the Visual and Hearing Impaired Persons to Convert Braille
Characters to English Text,"” 2021 International Conference on Emerging Smart
Computing and Informatics (ESCI), Pune, India, 2021, pp. 587-592, doi:
10.1109/ESCI150559.2021.9396859.

S. Ramachandran, G. D, P. K N and N. Rajan, "Text to Braille Converting
Communication Device forthe Visual and Hearing Impaired Persons,” 2021 International
Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India,
2021, pp. 1-5, doi: 10.1109/1CCCI150826.2021.9402590.

S. Kumari, A. Akole, P. Angnani, Y. Bhamare and Z. Naikwadi, "Enhanced Braille Display Use
of OCR and Solenoid to Improve Text to Braille Conversion,” 2020 International Conference for
Emerging Technology (INCET), Belgaum, India, 2020, pp. 1-5, doi:
10.1109/INCET49848.2020.9153996.

F. S. Apu, F. 1. Joyti, M. A. U. Anik, M. W. U. Zobayer, A. K. Dey and S. Sakhawat, "Text and
Voice to Braille Translator for Blind People,” 2021 International Conference on Automation,
Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 2021, pp. 1-6, doi:
10.1109/ACMI153878.2021.9528283.

Parthiban, T., Reshmika, D., Lakshmi, N., Ponraj, A. (2022). Handwritten Text to Braille for
Deaf-Blinded People Using Deep Neural Networks and Python. In: Marriwala, N., Tripathi, C.,
Jain, S., Kumar, D. (eds) Mobile Radio Communications and 5G Networks. Lecture Notes in
Networks and Systems, vol 339. Springer, Singapore. https://doi.org/10.1007/978-981-16-7018-
3 28.

K. Shomenov, A. Yuldashov and M. H. Ali, "A Compact 3D Printed Text-to-Braille Converting
Device with Optical Character Recognition (OCR)," 2023 10th International Conference on

88

https://doi.org/10.1109/acmi53878.2021.9528283
https://doi.org/10.12785/ijcds/090418
https://doi.org/10.1109/ISCON57294.2023.10112021
https://doi.org/10.1155/2020/3461651
https://doi.org/10.1007/978-3-030-21248-3_25
https://doi.org/10.1007/978-981-16-7018-3_28
https://doi.org/10.1007/978-981-16-7018-3_28

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-376

[19]

[20]

[21]

Electrical and Electronics Engineering (ICEEE), Istanbul, Turkiye, 2023, pp. 12-17, doi:
10.1109/ICEEE59925.2023.00010.

M. Kavitha, V. Meenakshi, M. Pushpavalli, S. Amudha, S. Bharathi and P. Pavithra,
"Communication Device for Converting Text to Braille language for Visually Impaired
People,” 2023 International Conference on Inventive Computation Technologies (ICICT),
Lalitpur, Nepal, 2023, pp. 1016-1023, doi: 10.1109/ICICT57646.2023.10134300.

Saxena, D. Verma, J. Pathak and R. K. Singh, "A Device for Automatic Conversion of Speech to
Text and Braille for Visually and Hearing Impaired Persons," 2022 8th International Conference
on Signal Processing and Communication (ICSC), Noida, India, 2022, pp. 560-564, doi:
10.1109/1CSC56524.2022.10009287.

Chougule, S., & Patil, K. (2020). A review on the text-to-braille conversion system. IOP
Conference Series: Materials Science and Engineering, 846(1), 012008.
https://doi.org/10.1088/1757-899X/846/1/012008.

89

https://doi.org/10.1088/1757-899X/846/1/012008

